Solving parabolic stochastic partial differential equations via averaging over characteristics
نویسندگان
چکیده
The method of characteristics (the averaging over the characteristic formula) and the weak-sense numerical integration of ordinary stochastic differential equations together with the Monte Carlo technique are used to propose numerical methods for linear stochastic partial differential equations (SPDEs). Their orders of convergence in the mean-square sense and in the sense of almost sure convergence are obtained. A variance reduction technique for the Monte Carlo procedures is considered. Layer methods for linear and semilinear SPDEs are constructed and the corresponding convergence theorems are proved. The approach developed is supported by numerical experiments.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملExact solutions of a linear fractional partial differential equation via characteristics method
In recent years, many methods have been studied for solving differential equations of fractional order, such as Lie group method, invariant subspace method and numerical methods, cite{6,5,7,8}. Among this, the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order. In this paper we apply this method f...
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملNumerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions
In this work, we consider the parabolic equation: $u_t-u_{xx}=0$. The purpose of this paper is to introduce the method of variational iteration method and radial basis functions for solving this equation. Also, the method is implemented to three numerical examples. The results reveal that the technique is very effective and simple.
متن کاملTime Averaging for Random Nonlinear Abstract Parabolic Equations
It is well known that the averaging principle is a powerful tool of investigation of ordinary differential equations, containing high frequency time oscillations, and a vast work was done in this direction (cf. [1]). This principle was extended to many other problems, like ordinary differential equations in Banach spaces, delayed differential equations, and so forth (for the simplest result of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 78 شماره
صفحات -
تاریخ انتشار 2009